
EMFGormas meta-model manual

Emilia Garcia, E. Argente, and Adriana Giret

Departamento de Sistemas Informaticos y Computacion,
Universidad Politecnica de Valencia

{mgarcia,eargente,agiret}@dsic.upv.es

1 EMFGormas metamodel

This section details our approach to model Service-oriented Open MAS using
the MDA Eclipse technology. For that reason, we have defined a platform inde-
pendent unified meta-model that describes the modeling language in a formal
way, establishing the primitives and syntactic-semantic properties of organiza-
tions and multiagent systems. The unified meta-model that we define is based
on GORMAS [6].

GORMAS meta-models represent an interesting starting-point for the spec-
ification of a SOMAS model, but they present some drawbacks. Firstly, they
imply a rather high modeling cost, as meta-models are composed of different
views, so a designer should employ a total of 19 types of diagrams for modeling
a system, as well as several instances for each type of diagram. For example,
he/she should define an agent model for each identified agent. Thus, the cost of
the modeling task may increase exponentially to the number of views. Secondly,
GORMAS meta-models have several relationships replicated in different models,
in order to make them easier to be understood from a theoretical point-of-view.
However, these replicated relationships might introduce several conflicts and in-
consistences inside a graphical development tool, so they should be removed.
Finally, since GORMAS is mainly an extension of both INGENIAS [15] and
ANEMONA [17] meta-models, it is mainly defined from a theoretical point-of-
view, but not from a graphical point-of-view, so a final user will find rather
difficult to manage all GORMAS diagrams in an easy way. For example, de-
scribing an interaction process implies taking into account three different types
of diagrams and check that they are consistent with each other. Thus, it is nec-
essary to develop a unified meta-model that clearly takes into account the final
usage of diagrams by designers.

In order to resolve these drawbacks, we have defined a unified meta-model
for Service-Oriented Open MAS that simplifies GORMAS meta-models, reducing
the number of core views and entities and also removing all unnecessary entities
and relationships, so then making its graphical usage easier. The proposed unified
meta-model is composed of 10 views (Figure 3) that are described below. The

1.1 Model Driven Architecture and Eclipse technology

In the software engineering field, a model-driven software development process
should be clearly defined by specifying all the phases of the development lifecy-



c

Fig. 1. Unified meta-model for SOMAS

cle. Furthermore, CASE tools should be provided, as a support of the different
tasks in the model based design such as analysis and verification of models or
automatic transformation from one specification language to another, in a trans-
parent and simple way.

The MDA [7] initiative is proposing a standard to which the meta-models
of the specification languages used in the modeling process must be compliant
with, that is the Meta Object Facility (MOF), and a set of requirements for
the transformation techniques that will be applied when transforming a source
model into a target model, referred as the Query/View/Transformation (QVT)
approach [20]. Basically, MDA proposes an approach to software development
based on modeling and on the automated mapping of source models to target
models. The models that represent a system and its environment can be seen as
a source model and code can be seen as a target model as well.

Fig. 2. Eclipse plugins structure

Following these MDA standards, the Eclipse Platform [8] is an open source
initiative that offers a reusable and extensible framework for creating IDE ori-
ented tools. The Eclipse Platform itself is organized as a set of subsystems (im-
plemented in one or more plug-ins) built on the top of a small runtime engine.



As shown in Figure 2, some plugins like EMF, GEF, GMF, Mofscript, Xpand2
are offered by the platform in order to allow the creation of IDE tools based on
an specific meta-model.

The EMF plug-in offers a modeling framework and code generation facility
for building tools and other applications based on a structured data model. From
a model specification described in XMI, Rational Rose or the ecore standard,
EMF provides tools and runtime support to produce a set of Java classes for the
model. Moreover, EMF generates a textual modeler editor from the meta-model,
whereas the GEF and GMF plug-in allows developers to create a rich graphical
editor from an existing application model.

Recently, model driven approaches have been recognized and become one
of the major research topics in agent oriented software engineering community.
Some works like [21–23] show how MDA can be effectively applied to agent
technologies. Furthermore, they show how the MDA technology can help to
reduce the gap between the analysis phase and the final implementation. Some
CASE tools to model MAS have been developed using the Eclipse technology [24,
25]. Regarding these studies and tools, it can be said that the current application
of the MDA process on MAS development is still in its preliminary phase.

2 Unified meta-model for SOMAS

This section details our approach to model Service-oriented Open MAS using the
MDA Eclipse technology. As explained before, this technology requires defining a
platform independent unified meta-model that describes the modeling language
in a formal way, establishing the primitives and syntactic-semantic properties of
organizations and multiagent systems. The unified meta-model that we define,
named EmfGormas, is based on VOM [26].

The proposed unified meta-model is composed of 10 views (Figure 3) that are
described below. The implementation of the meta-model in ecore format can be
consulted in http://www.dsic.upv.es/users/ia/sma/tools/EMFgormas/index.html.

Firstly, the analysis of the system requirements is carried out, defining the
global goals of the organization, the stakeholders and the functionality that the
organization provides and requires from these stakeholders. All this is depicted
in the Organization external view diagram (Figure 5).

Secondly, the analysis of the goals of the organization is carried out in which
the global goal of the organization is refined into more functional goals, which
represent non-functional requirements that must or should be accomplished by
the organizational units of the system. All this is defined in the Objectives
view diagram (Figure 9).

Next, the components of the organization are defined, i.e. the Organizational
Units (OU), which represent groups of members of the organization; the roles
defined inside each OU that will be related to the system functionality; their
social relationships; the products available by the OUs that can be accessible
for their members; and the norms that control the global behavior of the OU



Objective

D A

Task

D I

ServicePort

D
S

d

Role

D
S

OrgExternal

AD

Agent

D

ST

AT

E

Interaction

D

Environment

D

Structural

D

Normative

D

Organizations and 

their objectives

Organizations in a 

normative environment

Which roles and agents 

achieve these objectives?

How are the 

organizations structured ?

How are the general 

objectives split ?

How are the organizations 

related with their 

environment ?

How do roles and agents achieve 

these objectives?

Where are the services published?

Who is able to manage these Ports?

Fig. 3. Unified meta-model for SOMAS

members. These concepts are described in the Structural view diagram (Figure
6).

Moreover, the products of the environment are analysed, divided into ap-
plications (functional interfaces) or resources (with consumable features). The
permissions for accessing these elements of the enviroment are also defined. All
them are depicted in the Environment View diagram (Figure 13).

Thirdly, the internal functionality of the OUs is defined, by means of the Role
and Agent Views. In the Role View (Figure 7), the roles are related with their
responsibilities (tasks), capabilities (services) and objectives. The Agent View
(Figure 8) describes the concrete responsibilities of agents (tasks), the roles that
they can play inside an OU, the services that offer to other entities, their mental
states (believes, events and facts) and the goals that they pursue.

The way in which the roles and agents achieve their goals is defined by means
of the Interaction and Task Views. In the Interaction View (Figure 11), the
participants of the interaction are identifed, as well as the sequence of activities
(task and services) and performatives that are employed through the interaction.
In the Task View (Figure 10), the specific functionality of the services and tasks
is detailed, more specifically, the service description (ServiceProfile); its specific



implementation, by means of service or task composition; as well as the sequence
of tasks that is needed.

Finally, the Service Port View (Figure 12) defines the way in which the
services must be published so as to be discovered by any agent. Thus, the service
publication points (service port) are identified, as well as the entities that control
each port and give permissions for registring or accessing services.

Throught the whole process, whenever a restriction on the behavior of the
system entities is identified, it should be described in the Normative View
diagram (Figure 14).

As explained before, this is not a linear process but an iterative one, in
which the identification of a new element of the system (such as a new role, a
new agent, etc.) implies the integration of this element in all the diagrams in
which it is needed. For example, all agents defined in the Agent View diagram
must be also integrated into the Structural View diagram. And the services and
tasks defined in both Role View and Agent View diagrams must also appear
in the Task View diagram. These interdependences between diagrams are all
controlled by the EMFGormas tool.



3 Detailed description of EMFGormas

3.1 Entities

Fig. 4. Entities.



3.2 Organization external view

Fig. 5. Emf metamodel Organization External View.

The Organization external view (Figure 5) allows defining the global
goals of the organizations and the functionality that organizations provide and
require from their environment. More specifically, it defines:

– the functional objectives that are pursued by the organization, i.e., non-
functional requirements (softgoals) that can be defined for describing the
global behavior of this organization.

– the stakeholders that interact with the organization.
– the results that the organization offers (products and services, which are de-

scribed using service profiles). In case of services, a specific implementation
of the service can be defined in the offers relationship (ServiceImplementa-
tion attribute), which may be registered in a service directory (RegisterPort
attribute), so then other entities can find it. Conditions for controlling this
registration process can also be specified (RegisterCondition and Deregister-
Condition attributes).

– the services that are required by the organization. This ”requires” relation-
ship is similar to a job offer advertising of human organizations, in the sense
that it represents a necessity of finding agents capable of providing these
required services as members of the organization.

– the organization needs from its providers (Consumes relationship).
– the roles that the organizational unit may play inside other OUs (Plays

relationship), when considered as a unique entity. ActivationCondition and
LeaveCondition attributes of this relationship indicate in which situation an
OU acquires or leaves a role.



Relationship with Gormas metamodel :
It includes Gormas external functionality and mission views.This view allows
defining the global goals of the organizations and the functionality that the
organizations provide and require from their environment. The entity Mission
goal has been removed because it can be modeled as a Functional objective.
Moreover, some not necessary relationships has been also removed. For example,
the relationship that indicates that a stakeholder interact with an organizational
unit can be removed because this information is reflected when a stakeholder
consumes or others a service that the organizational unit others or consumes.

3.3 Structural view

Fig. 6. Emf metamodel Structural View.

The Structural view (Figure 6) allows defining the static components of
the organization, i.e. all elements that are independent of the final executing
entities. More specifically, it defines:

– the entities of the system (AAgent), which represent an atomic entity (Agent)
or a group of members of the organization (Organizational Unit), seen as a
unique entity from outside.

– the Organizational Units (OUs) of the system, that can also include other
OUs in a recursive way, as well as single agents.

– the Roles defined inside the OUs. In the contains relationship, a minimum
and maximum quantity of entities that can acquire this role can be speci-
fied. For each role, the Accessibility attribute indicates whether a role can
be adopted by an entity on demand (external) or it is always predefined by
design (internal). The Visibility attribute indicates whether other entities



can obtain information from this role on demand, from outside the organi-
zational unit (public role) or from inside, once they are already members of
this OU (i.e. private role). A hierarchy of roles can also be defined with the
InheritanceOf relationship.

– the organization social relationships. The type of a social relationship be-
tween two entities is related with their position in the structure of the orga-
nization (i.e. information, monitoring, supervision), but other types are also
possible. Moreover, a condition on when this social relationship is active can
also be established.

– the products available by an OU.
– the norms that control the global behavior of the members of the OU.

Relationship with Gormas metamodel :
Structural view includes Gormas structural and social views. This view allows
defining the components of the organizations and their social relationships. The
reason why these views have been joined, is because most times the type of social
relationship between two entities is related with their position in the structure
of the organization.

3.4 Role view

Fig. 7. Emf metamodel Role View

The Role view (Figure 7) allows defining the internal functionality of the
organizational units and MAS systems, associating the roles with responsibilities,
capabilities, objectives and the services that agents playing each role should offer.
More specifically, it defines:



– the goals (AObjective) pursued by a role, which can be functional objec-
tives (i.e. softgoalS or non-functional requirements) or operational goals (i.e.
hardgoals or objectives). In the pursues relationship, activation and deadline
conditions can be defined to stablish a temporal timeline in which the ob-
jective is followed. In case of an operational goal (objective), a satisfaction
or fail condition can be defined in order to stablish when this objective has
been fulfilled.

– the services (ServiceProfile) related to the role, i.e., the services that the role
is enabled to offer or provide to other entities.

– the tasks that the role is responsible for, i.e. the specific functionality that
the role is expected to be able to carry out.

Relationship with Gormas metamodel :
Internal functionality view is derived from the Gormas internal functionality
view, but the information related to the agent and organizational units tasks and
services other have been removed because this information should be expressed
in the agent and mission view respectively. This view allows defining the internal
functionality of the organizational units and MAS systems associating the roles
with responsibilities, capabilities and objectives.

3.5 Agent view

Fig. 8. Emf metamodel Agent View.



The Agent view (Figure 8) describes concrete responsibilities of agents and
their internal functions, i.e., the agent goals, roles and tasks. The sociability
features of agents are represented by means of services, which are implemented
through tasks. Thus, an agent is not only capable of executing some tasks, but
also of providing a specific functionality (services) to other agents. More specif-
ically, it defines:

– the objectives pursued by agents. Activation and deadline conditions can be
defined to stablish a temporal timeline in which the objective is followed.
Moreover, a satisfaction or fail condition can be defined in order to stablish
when this objective has been fulfilled.

– the roles played by the agent. Conditions for acquiring and/or leaving the
role can be defined.

– the services (ServiceProfile) related to the agent, i.e., the services that the
agent might offer to other entities. When adopting a role as a member of
an organization, the concrete set of services that the agent will be allowed
to provide is determined by its own set of offered services and those ones
related to the adopted role.

– the tasks that the agent is responsible for, i.e. the set of tasks that the agent
is capable of carrying out.

– the Mental States of the agent, using believes, events and facts.

Relationship with Gormas metamodel :
Agent view is derived from Gormas Agent meta-model. This view describes the
agent goals, roles and tasks. Moreover, it can represent the different Mental
States of the agent using believes, events, facts and objectives. The difference
with Gormas meta-model is that some relationships have been removed due to
they have been defined in other views, for example, which goals follow the roles
that is defined in the Internal functionality view.

3.6 Objective view

The Objectives view (Figure 9) allows defining the objectives decomposition
and dependencies. More specifically, it defines:

– The AObjective components, which can be functional objectives (i.e. soft-
goal or non-functional requirements) or operational goals (i.e. hardgoals or
objective).

– The Functional objectives represent the expected results of organizational
units, which are split into the specific and measurable results that their
members are expected to achieve.

– The Objectives represent the operational goals, i.e., the specific goals that
agents or roles have to fulfill. They can also be refined into more specific
objectives. They might be related with a Task or Interaction needed for
satisfying this objective.



Fig. 9. Emf metamodel Objectives View

Relationship with Gormas metamodel :
Objectives view is derived from the Gormas objectives view and they do not have
significant differences. This view allows defining the objectives decomposition
and dependencies. Services view is derived from the Gormas Services view and
uses some concepts of the Gormas ServicePort view. This view allows defining
the service description and shows its composition (defined in the tasks view).

3.7 Task view

Fig. 10. Emf metamodel Tasks View.

The Tasks view (Figure 10) allows defining the functionality of the services
and tasks. More specifically, it defines:

– The ATask component describes the service functionality and represents
both concrete tasks, task-flows or service composition (Invokes relationship).
This ATask component can be split into other ATasks, thus allowing service
refinement or task composition.



– A Task represents a basic functionality, that consumes and produces changes
in the agent’s Mental States.

– The order relationship between tasks, in which ordering conditions can be
defined, as well as interactions. The entity Condition allows defining the
sequence of tasks depending on a condition.

– The service interface (ServiceProfile), which indicates activation conditions
of the service (preconditions), its input and output parameters and its effects
over the environment (postconditions). It can be lately used in an OWL-S
service description.

– The service specific functionality (ServiceImplementation), which describes
a concrete implementation of a service profile.

– The service composition, by means of invokations between services.

Relationship with Gormas metamodel :
Tasks view includes Tasks and Tasks ow views. This view allows defining the
functionality of the services and tasks, i.e., which entities they produce and
need to be executed. Moreover, it allows defining how services and task can be
decomposed into more simple elements and the order of these elements.

3.8 Interaction view

Fig. 11. Emf metamodel Interaction View



The Interaction View (Figure 11) allows defining the sequence of interac-
tions. More specifically, it details:

– The participants of the interaction (Executer). The Initiates and Collab-
orates relationships indicate the sequence of activities (task and services)
that have been executed in an interaction. The Collaborates relationship
represents a response activity.

– The performatives (InteractionUnit) employed during the interaction.
– The entity Condition allows changing the sequence of interactions depending

on a condition.

Relationship with Gormas metamodel :
Interaction view summarizes the concepts of the whole Gormas interaction meta-
model without losing expressiveness. This view allows defining the sequence of
interactions and which objectives and services are related. Moreover, the en-
tity Condition has been added in order to change the sequence of interactions
depending on a condition.

3.9 ServicePort view

Fig. 12. Emf metamodel ServicePort View.

The Services Port View (Figure 12) allows defining the service ports, who
is responsible for each port and who can use it. More specifically, it details:

– A service port, which is considered as a service publication point that offers
the possibility of registering and searching services by their profile.

– The entities (Executer) that control the service port (Manages relationship),
so they can define the usage permissions over this port.

– The entities (Executer) that are allowed to use the port, for registring new
services or accessing existing ones.

Relationship with Gormas metamodel :
Interaction view summarizes the concepts of the whole Gormas interaction meta-
model without losing expressiveness. This view allows defining the sequence of
interactions and which objectives and services are related. Moreover, the en-
tity Condition has been added in order to change the sequence of interactions
depending on a condition.



3.10 Environment view

Fig. 13. Emf metamodel diagrams: Environment View

The Environment View (Figure 13) describes the environment elements
(resources and applications). More specifically, it defines:

– The products that are contained in the Organizational Units or that belong
to specific agents. They can be applications or resources.

– Resources represent environment objects that do not provide a specific func-
tionality, but are indispensable for task execution. They can be consumable
or not, have an initial state (Quantity), a lower and upper threshold (Min-
Quantity, MaxQuantity) and a capacity granularity.

– Applications represent functional interfaces that are described with a name,
several parameters, preconditions, postconditions and results.

– Products can be associated to environment ports, thus describing who can
use each resource or application and who is responsible of giving these per-
missions.

– The Executer that controls the service environment (Manages relationship)
defines the usage permissions over this port.

– The Executer allowed to use the port can employ it for perceiving or acting
over the associated product.

Relationship with Gormas metamodel :
Environment view is derived from the Gormas Application view and Gormas



Resource view. It includes concepts from the Gormas Port view. This view al-
lows defining the applications. It allows specifying the functionality, who are
the owners and how these application can be accessed. Furthermore, this view
allows defining resources and specifying the owners and how these services can
be accessed.

3.11 Normative view

Fig. 14. Emf metamodel diagrams: Normative View

Finally, the Normative View (Figure 14) describes normative restrictions
over the behavior of the system entities. More specifically, it defines:

– the Norm concept, which represents a specific regulation. The properties of
the norm detail all facts and events of the environment that provoke the
activation or deactivation of the norm.

– The entity (Executer) to whom the norm is applied (Concerns relationship).
– The Executer that is in charge of monitoring the norm satisfaction (Con-

troller relationship).
– The Executer that is responsible of punishments (Defender relationship).
– The Executer that is responsible of rewards (Rewarderer relationship).
– The ATask attribute of all these relationships indicates which task or service

will be invoked when monitoring this norm and when punishing or rewarding
agents.

Relationship with Gormas metamodel :
Normative view is derived from Gormas Normative meta-model. This view allows
defining norms, their goals, their activation and deadline conditions, who control
these norms and who are affected by it. As the agent view, the most important
difference with the Gormas meta-model is that some relationships have been
removed.

References

1. Luck, M., McBurney, P., Gonzalez-Palacios, J.: Agent-based computing and pro-
gramming of agent systems. In: PROMAS. (2005) 23–37



2. Huhns, M., Singh, M., Burstein, M., Decker, K., Durfee, E., Finin, T., Gasser, L.,
Goradia, H., Jennings, N.R., Lakartaju, K., Nakashima, H., Parunak, V., Rosen-
schein, J., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe, M., Wag-
ner, T., Zavala, L.: Research directions for service-oriented multiagent systems.
IEEE Internet Computing 9(6) (2005) 52–58

3. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. In: International J. Supercomputer Applications. (2001) 23–
37

4. Boella, G., Hulstijn, J., van der Torre, L.W.N.: Virtual organizations as normative
multiagent systems. In: HICSS, IEEE Computer Society (2005)

5. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organi-
zational View of Multi-Agent Systems. In Giorgini, P., Muller, J., Odell, J., eds.:
Agent-Oriented Software Engineering VI. Volume LNCS 2935 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 214–230

6. Argente, E., Julian, V., Botti, V.: Mas modelling based on organizations. In: 9th
Int. Workshop on Agent Oriented Software Engineering (AOSE08). (2008) 1–12

7. Soley, R., the OMG Staff Strategy Group: Model driven architecture. Object
Management Group White Paper Draft 3.2 (2005)

8. : Eclipse - an open development platform (2008)
9. Argente, E., Julian, V., Botti, V.: Multi-agent system development based on orga-

nizations. Electronic Notes in Theoretical Computer Science 150 (2006) 55–71
10. Dignum, V., Dignum, F.: A landscape of agent systems for the real world. Technical

report 44-cs-2006-061, Institute of Information and Computing Sciences, Utrecht
University (2006)

11. Huhns, M., Singh, M.: Reseach directions for service-oriented multiagent systems.
IEEE Internet Computing Service-Oriented Computing Track. 9(1) (2005)

12. Trencansky, I., Cervenka, R.: Agent modelling language (AML): A comprehensive
approach to modelling mas. In: Informatica. Volume 29(4). (2005) 391–400

13. Ferber, J., Michel, F., Bez-Barranco, J.: Agre : Integrating environments with
organizations. Environments for Multi-agent Systems. 3374 (2005) 48–56

14. Gateau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. Environments for
Multi-Agent Systems III 4389 (2007) 41–50

15. Pavon, J., Gomez-Sanz, J., Fuentes, R. In: The INGENIAS Methodology and
Tools. Volume chapter IX. Henderson-Sellers (2005) 236–276

16. Dignum, V., Vazquez-Salceda, J., Dignum, F.: Omni: Introducing social structure,
norms and ontologies into agent organizations. LNAI 3346 (2005)

17. Botti, V., Giret, A.: Anemona. a multi-agent methodology for holonic manufac-
turing systems. Springer Series in Advanced Manufacturing XVI (2008) 214

18. Esteva, M., Rodriguez-Aguilar, J., Sierra, C., Arcos, J., Garcia, P. Lecture Notes
in Artificial Intelligence 1991. In: On the Formal Specification of Electronic Institu-
tions. Springer-Verlag (2001) 126–147

19. Argente, E., Julian, V., Botti, V.: Mas modelling based on organizations. In: Proc.
AOSE08. (2008) 1–12

20. : Meta object facility (mof) 2.0 query/view/transformation specification. Object
Management Group (Document ad 07-07-07)

21. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.P.: Model driven engineering
for designing adaptive multi-agents systems. (2008) 318–332

22. Perini, A., Susi, A.: Automating model transformations in agent-oriented mod-
elling. In Springer, ed.: In Agent-Oriented Software Engineering VI: AOSE 2005.
LNCS (2005)



23. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the gap between agent-oriented
design and implementation using mda. In: In Proceedings of the Fifth International
Workshop on Agent-Oriented Software Engineering (AOSE 2004). LNCS (2004)
93–108

24. Hachicha, H., Loukil, A., Ghedira, K.: Mamt: an environment for modeling and
implementing mobile agents. In: Sixth International Workshop From Agent Theory
to Agent Implementation (AT2AI-6). (2008)

25. Morandini, M., Nguyen, C.D., A. Perini, A.S., Susi, A.: Tool-supported develop-
ment with tropos: the conference management system case study. In: Agent Oriented
Software Engineering (AOSE), at AAMAS. (2007)

26. N. Criado and E. Argente and V. Julian and V. Botti: Designing Virtual Organi-
zations, Proc. PAAMS’09, 2009, ”Advances in Soft Computing”,55,440-449


